一、复习导入 我们学习过哪些判断两直线平行的方法? (1)平行线的定义:在同一平面内不相交的两条直线平行。 (2)平行公理的推论:如果两条直线都平行于第三条直线,那么这两条直线也互相平行。 (3)两直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 二、例题 例在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么? 解:这两条直线平行。 ∵b⊥ac⊥a(已知) ∴∠1=∠2=90°(垂直的定义) ∴b∥c(同位角相等,两直线平行) 你还能用其它方法说明b∥c吗? 方法一:如图(1),利用“内错角相等,两直线平行”说明;方法二:如图(2),利用“同旁内角相等,两直线平行”说明. (1)(2) 注意:本例也是一个有用的结论。 例2如图,点B在DC上,BE平分∠ABD,∠DBE=∠A,则BE∥AC,请说明理由。
分析:由BE平分∠ABD我们可以知道什么?联系∠DBE=∠A,我们又可以知道什么?由此能得出BE∥AC吗?为什么? 解:∵BE平分∠ABD ∴∠ABE=∠DBE(角平分线的定义) 又∠DBE=∠A ∴∠ABE=∠A(等量代换) ∴BE∥AC(内错角相等,两直线平行) 注意:用符号语言书写证明过程时,要步步有据。 |