5.3.1平行线的性质 一、引导学生逆向思维 现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达? 二、实践探究 1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1). 2.学生测量这些角的度数,把结果填入表内. (1)图中哪些角是同位角?它们具有怎样的数量关系?(2)图中哪些角是内错角?它们具有怎样的数量关系? (3)图中哪些角是同旁内角?它们具有怎样的数量关系? 4.学生验证猜测. 学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗? 5.师生归纳平行线的性质,教师板书. 平行线具有性质: 性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等. 性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等. 性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补. 教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定. 平行线的性质平行线的判定 因为a∥b,因为∠1=∠2, 所以∠1=∠2所以a∥b. 因为a∥b,因为∠2=∠3, 所以∠2=∠3,所以a∥b. 因为a∥b,因为∠2+∠4=180°, 所以∠2+∠4=180°,所以a∥b. 6.教师引导学生理清平行线的性质与平行线判定的区别. |